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ABSTRACT 

Consider a domain /~ that  is complete with respect to a non-zero prime 

ideal. This  paper  proves two Galois-theoretic results about  such rings. 

Using Grothendieck's  Existence Theorem we prove that  every finite group 

occurs as the Galois group of a Galois extension of/~[x]. This  generalizes 

results of David Harbater  who proved the result in the case where the 

ideal is maximal  and the domain is normal. As a consequence, we deduce 

tha t  i f /~ is a Noetherian domain that  is complete with respect to a non- 

zero prime ideal, then every finite group occurs as a Galois group over/~. 

This proves the Noetherian case of a conjecture posed by Moshe Jarden. 

1. I n t r o d u c t i o n  

Let A~ be Spec(R[t]), the affine t-line over a ring R. Let ~ be the projective t- 

line. Using Riemann's Existence Theorem one can construct algebraic branched 

covers of the complex projective line F~ with arbitrary (finite) Galois group. 

Using techniques from formal geometry, Harbater [H3] constructs branched covers 

of the p-adic projective line F~p with arbitrary Galois group, and more generally 

shows every finite group occurs as a Galois group over the fraction field of/~[t], 

where /~ is a normal domain that is complete with respect to a maximal ideal 

m. Liu [Li] shows these results from the point of view of rigid geometry. Further 

discussion of these results can be found in [V] and [MMa]. This paper generalizes 

these results. 

Now le t /~  be a domain containing a domain (not necessarily normal) that  is 

complete at a non-zero prime ideal (not necessarily maximal). We prove that  
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every finite group G is the Galois group of a regular cover of F R. Thus G is the 

Galois group of some Galois extension of/~[x] (and its fraction field) (Theorem 

3.17 and Corollary 3.18). Using Grothendieck's Existence Theorem, we first prove 

the special case o f /~  = Z[[xl] by adapting arguments from [H2] and [H3]. We 

then use this special case and results from [H3] to extend to the general case. 

As a corollary, we deduce that  i f /~  is a Noetherian domain of dimension at 

least two which contains a domain that  is complete with respect to a non-zero 

prime ideal, then every finite group occurs as a Galois group over /~ (Corollary 

3.20). As a consequence we prove the Noetherian case of a conjecture posed by 

Moshe Jarden; namely, i f /~ = D[[xl, ..., xr]] is a power series ring of dimension 

at least two with coefficients in a Noetherian domain D, then every finite group 

occurs as a Galois group over/~ (Corollary 3.21). 

Special thanks are due David Harbater  and Moshe Jarden for their helpful 

suggestions and careful readings of various drafts of this paper. In addition 

thanks are due David Saltman for many helpful discussions and the referee for 

his or her comments and suggestions. 

2. Definitions, notation and terminology 

This section introduces the notation and terminology used throughout the paper. 

The reader may wish to skip this section on a preliminary reading, and refer back 

to it as necessary. 

Section 3 proves results in algebraic geometry and commutative algebra. We 

first introduce the algebro-geometric concepts used in this paper  and include 

some basic remarks. 

Det~nition 2.1: If a scheme Z is a minimal finite union of irreducible schemes 

Z1 , . . .  ,Z . , ,  then each Zi is an i r r e d u c i b l e  c o m p o n e n t  or a shee t  of Z. If 

Z --- Spec(A), and the zero ideal (0) C A has a primary decomposition, then the 

irreducible components of Z correspond to the primary decomposition of the zero 

ideal. Thus a sufficient condition for a scheme to have finitely many irreducible 

components is for it to be Noetherian. 

De~nition 2.2: Let A be a domain. An extension of A-algebras A C B is 

generically separable if the total ring of fractions of B is separable over Frac(A) 

and no non-zero element of A becomes a zero-divisor in B [H4, p. 493]. A 

morphism of affine schemes Spec(B) --+ Spec(A) is gene r i ca l l y  s e p a r a b l e  if the 

corresponding extension of A-algebras is generically separable. A morphism of 

schemes Y -+ X is generically separable if it is generically separable on each 

affine open subset of X. 
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Definition 2.3: Let X be an integral scheme and L a proper closed subset of 

X.  A c o v e r  of X with b r a n c h  locus  L is a generically separable (Definition 

2.2) finite morphism 7r: Z --~ X which is 6tale over U = X - L. Such a cover is 

a m o c k  c o v e r  if the restriction of 7r to each irreducible component (Definition 

2.1) of Z is an isomorphism [H1, p. 403]. 

Definition 2.4: Given a finite, separable extension of fields K ( x )  C F we 

define the c o r r e s p o n d i n g  cove r  X -+ P~ to be the cover (Definition 2.3) of 

the projective t-line over K obtained by taking the normalization of P~( in F. 

Definition 2.5: Given a domain /~  that  is complete with respect to a non-zero 

prime ideal a and given proper morphisms X --+ Spec(/~) , Y ~ X, we define 

the c e n t r a l  f ib re  of Y ~ X to be the fibre over a, i.e. the morphism Y x Spec(h) 

Spec(/~/a) ~ X Xsp¢c(R ) Spec(/~/a). 

Notation 2.6: If the central fibre (Definition 2.5) of a cover (Definition 2.3) 
Y -~ X is a mock cover, we will say that  this cover is m o c k  o n  t h e  c e n t r a l  

f ibre.  

Definition 2. 7". We say that  a scheme X is i r r e d u c i b l e  if its underlying topo- 

logical space is irreducible [Ha, ti.3, p. 82]. We say that  a scheme X is loca l ly  

i r r e d u c i b l e  if for each point x C X,  the spectrum Spec(Ox,~) of the local ring 

at x is irreducible. It  follows that  if X is irreducible then X is locally irreducible. 

Remark  2.8: (a) Let X be a scheme such that  Sp(X) is locally finite (e.g. if X 

is locally Noetherian). If X is locally irreducible (Definition 2.7) and connected, 

then it is irreducible. This is seen as follows: By replacing X with Xred, if 

necessary, we may assume that  X is reduced. It follows from [Ha, II, Exercise 

2.3] that  the local ring of the reduced scheme at a point x is the reduction of the 

local ring of X at x. Thus, by [Ha, II, Prop. 3.1] we may assume that  the local 

rings are integral. It follows from [Grl, Chap. 1, Cor. 4.5.6] that  X is integral 

and hence irreducible. 

(b) If X is normal, then X is locally irreducible. Hence in this case, X is 

irreducible if and only if X is connected. 

Definition 2.9: Let X be a reduced and irreducible scheme. Let Y --+ X be a 

morphism of schemes. Let Spec(A) be an affine open subset of X. Let K = 

K ( X )  = Frac(A) be the field of functions on X. Then a g e n e r i c  p o i n t  of X 

is a morphism ¢: Spec(K) --+ X. A gene r i c  f ib re  of the morphism Y -+ X is 

the pullback of ¢ along Y --+ X. L e t / ~  be the algebraic closure of K.  Then the 

extension of fields K C_ /~ corresponds to a morphism ¢: Spec(/~) ~ Spec(K).  
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The composition ¢¢  is a gene r i c  g e o m e t r i c  p o i n t  of X. The pullback of 

the composition along Y -4 X is a gene r i c  g e o m e t r i c  f ib re  of the morphism 

Y - + X .  

Det~nition 2.10: Given a finite group G, a G-Ga lo i s  c o v e r  (or more briefly, a 

G-cove r )  of schemes is a cover (Definition 2.3) Y -+ X together with a group 

homomorphism G --4 A u t x Y  which induces a simply transitive action of G on 

a generic geometric fibre (Definition 2.9) [H2, p. 281]. If X = Spec(A) and 

Y -- Spec(B) are affine, then we say the corresponding extension of A-algebras 

A C B, together with the induced homomorphism G --4 AutAB, is a G - G a l o i s  

e x t e n s i o n  o f  d o m a i n s .  For example: A finite separable extension of a field 

K(x) C L is G-Galois if the corresponding cover (Definition 2.4) is G-Galois. The 

extension K(x) c L is taken with the induced homomorphism G --+ AUtK(x)L. 

Note that  we allow ramification in a G-Galois extension of domains. 

Detlnition 2.11: Let K be a field and let K C_ L be an extension of K.  We call 

this extension r e g u l a r  if it is separable and if K is algebraically closed in L. 

Definition 2.12: Let Spec(S) --+ A~ be a cover (Definition 2.3). We will call the 

cover a r e g u l a r  c o v e r  o f  A~ if Frac(R) is algebraically closed in Frac(Si) for 

each Si, where Si is the domain corresponding to an irreducible component  of 

Spec(S) and i runs over the irreducible components of Spec(S). Note that  by the 

definition of a cover, Frac(R) C Frac(Si) is a separable extension of fields, hence 

Frac(R) C Frac(S~) a regular extension of fields (Definition 2.11). We will call 

a cover of p1  a r e g u l a r  c o v e r  if it is regular on any (and hence every) affine 

patch. 

Dei~nition 2.13: Following [Ja], say that  a group G is r e g u l a r  o v e r  a field K if 

G is the Galois group of a Galois field extension K(x) C F with K algebraically 

closed in F.  By definition of Galois, this field extension is separable; hence F / K  

is a regular field extension. We say that  a group G is r e g u l a r  o v e r  K w i t h  a 

r a t i o n a l  p o i n t  if G is the Galois group of a Galois extension of K(x) C F and 

the corresponding cover has a simple K-rational  point. In this case G is indeed 

regular over K (see Lemma 3.1). We say that  that  a group G is r e g u l a r  o v e r  a 

d o m a i n  D ( w i t h  a r a t i o n a l  po i n t )  if the corresponding statement  holds over 

Frac(D). 

Definition 2.14: We say that  a finite group G is r e a l i z ab l e  over a domain R, 

if there is a G-Galois extension of domains (Definition 2.10) R c S with Galois 

group G. 
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Definition 2.15: Let R C R' be an extension of domains. Let X --+ ]P'~, be a 

cover (Definition 2.3) with branch locus L' C P~,. We say the branch locus of 

X --~ I?~, is de f ined  o v e r  R if there is a closed subset L C P~ such that  L'  is 

the pullback of L with respect to ?~, -+ ~ .  

The results in Section 3 use techniques from formal algebraic geometry. We 

introduce some basic concepts from formal geometry from [Ha, II.9]. 

Remark  2.16: The theory of schemes in algebraic geometry is richer than the 

theory of varieties. Unlike the field of functions on a variety, the structure sheaf 

of a scheme may contain nilpotent elements. If Y is a subscheme of X defined by 

the sheaf of ideals 5[, we can define the (non-reduced) scheme Y,~ as the subscheme 

defined by the n-th power of the sheaf of ideals 1: n. 

In [Z], Zariski introduced holomorphic functions along a subvariety. This led 

to the notion of completing a scheme along a subscheme: 

Det/nition 2.17: Let X be a Noetherian scheme, and let Y be a closed sub- 

scheme, defined by a sheaf of ideals 5[. The f o r m a l  c o m p l e t i o n  o f  X a l o n g  

Y, denoted ()(, 02) ,  consists of the topological space Y with the sheaf of rings 

O~  = lim O x / I  n. We consider each O x / I  n as a sheaf of rings on Y and make 
+____ 

them into an inverse system in the natural way [Ha, II.9, p. 194]. 

Definition 2.18: Let X , Y  and I be as in the previous definition. Let ~- be a 

coherent sheaf on X. The c o m p l e t i o n  o f  ~ a l o n g  Y, denoted 5 ~, is the sheaf 

l im~- / In5  ~ on Y. It  has a natural  structure of an O2-module  [Ha, II.9, p. 194]. 
+___ 

Completing schemes along subschemes enables us to define a formal scheme: 

Det~nition 2.19: A N o e t h e r i a n  f o r m a l  s c h e m e  is a locally ringed space [Ha, 

Def. p. 72] (X, O~) which has a finite open cover {IJ~} such that  for each i the 

pair ( ~ , ( 9 ~ 1 ~ )  is isomorphic, as a locally ringed space, to the completion of 

some Noetherian scheme X~ along a closed subscheme (Definition 2.17) [Ha, II.9 

p. 194]. If :~ is the completion of a Noetherian scheme X along a subscheme Y, 

then a sheaf of ideals (resp. modules or algebras) on X is called a f o r m a l  s h e a f  

o f  idea l s  ( resp .  m o d u l e s  or  a l g e b r a s )  on X.  

Detinition 2.20: Let (X, Ox)  be a Noetherian formal scheme (Definition 2.19). A 

sheaf of ideals J C_ O~ is called an ideal  o f  de f in i t ion  for X if Supp ( 9 ~ / J  = 

and the locally ringed space (~, O x / J )  is a Noetherian scheme [Ha II.9 p. 194]. 

Mock covers, defined above, are one of the tools used in the formal patching 

process. Another of these tools, i n d u c e d  covers ,  is used in Proposition 3.12 

and is defined below. 
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Definition~Construction 2.21: Let Z -+ Y be an H-cover (Definition 2.3) and 

let H be a subgroup of G. The i nduced  G-cover  X = IndaH Z --~ Y is a 

(disconnected) G-cover, consisting of a disjoint union of [G : HI copies of Z --~ Y. 

It is constructed by choosing a base point on each copy of Z (over some base 

point on Y that is not in the branch locus) and choosing a corresponding set of 

left coset representatives for H in G (one of them being the identity element of 

G). Thus the connected components of X receive a labeling by the cosets gH, 

in such a way that g E G takes the "identity component" (i.e. the connected 

component labelled by l a H )  of X to the component labelled by gH [H3, p. 184]. 

If, in addition, the cover Z --~ Y is a mock cover, the sheets (i.e. irreducible 

components--Definition 2.1) of Z are labeled by the elements of H. In this case 

X = IndaH Z --~ Y is also a mock cover whose sheets receive a labeling by the 

elements of G in such a way that g E G takes the "identity sheet" (i.e. the sheet 

labeled by l a )  of X to the sheet labeled by g. 

3. Co ve r s  o f  t h e  line ove r  c o m p l e t e  d o m a i n s  

To prove the general result, we first show that for any finite group G, there 
1 is a regular irreducible G-Galois cover (Definitions 2.10, 2.12) of F~[[xl] and G 

is regular over Frac(/~) with a rational point. We use arguments similar to 

Lemma 2.1-Theorem 2.3 from [H3] that employ mock covers (Definition 2.3) to 

construct the desired covers. As in Harbater's paper, the technique for building 

regular irreducible G-Galois covers involves using mock covers and Grothendieck's 

Existence Theorem [Gr2, Cor. 5.1.6] to patch together cyclic pn-Galois covers. 

We first state a result about rational points from [Ja, p. 265]. 

LEMMA 3.1: Let K( t )  C L be a finite Galois extension of fields with Galois group 

G such that the corresponding cover (Definition 2.4) of curves has a simple K-  

rational point. Then K is algebraically closed in L; i.e. G is regular over K.  

Proof: By [JAR, Cor. A2] there exists a place ¢: L --4 K U {oc} over K. It 

follows from [Ja, Lemma 1.2] that K is algebraically closed in L and G is regular 

over K.  | 

We now follow an argument as in [H3, Lem. 2.1] to show that we can construct 

irreducible cyclic pn-Galois covers of ~[[~]] and we show these covers mock on the 

central fibre (Notation 2.6). The construction will allow control over the branch 

locus (Definition 2.3), which is a necessary condition to later patch the covers 

together. 
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We will need to use the following results about the existence of unramified 

rational points. 

PROPOSITION 3.2: L e t / q  be a domain that is complete  with respect to a non- 

zero pr ime  ideal a. Let/q[t] C S be an extension of  domains corresponding to a 

cover Spec(S) --4 A~, whose central fibre is a mock  cover. Let  y be an ~q-point o f  

1 not  mee t ing  the branch locus. Let  K -- Frac(/q). Then Spec(S) contains an A n  

unramified ~q-point; the generic fibre o f  the cover, corresponding to the extension 

1 is a regular o f  fraction fields, contains an unramified K-point;  and Spec(S) -+ An 

c o v e r .  

Proof: Let Ya be the reduction of y mod a (i.e. the /q /a-poin t  where y meets 
1 A~/~). The fibre over this y~ consists of/q/a-points,  since S p e c ( S / a S )  --+ A~./a 

is a mock cover and y~ does not meet the branch locus. By Hensers Lemma [B, 

III.4.3, Thm. 1], the fbre  over y consists o f /q  points of Spec(S). The generic 

fibre of the fibre over y thus consists of/~-points of Spec(Frac(S)) and these are 

1 is a regular cover. unramified. It follows from Lemma 3.1 that Spec(S) -+ A~ 
| 

To construct 2-cyclic covers that meet the above conditions, we may proceed 

directly. The remaining cases will require some additional lemmas and use results 

of Sal tman [Sa]. 

LEMMA 3.3: Let  K be a field o f  characteristic O, let t be an indeterminate,  and 

let m ~ 2 be an integer. Let  F( t )  E Kit] be a polynomial  o f  degree ~_ 1 and let 

a E K×.  Then  

(a) F( t )  m - a is not  an m - t h  power in K[t], 

(b) y m  _ (F( t )m  _ a) is irreducible over K( t ) .  

Proof: (a) Without loss of generality K contains a primitive m-th root of unity 

~r~- 
Suppose, by contradiction, that F( t )  m - a = G(t)  m, where G(t)  E K[t]. Then 

rn--1 

a - -  F( t )  m - G(t)  m = I I  (F( t )  - ~ G ( t ) ) .  
j=O 

Hence each factor in the product is of degree O. In particular, 

~,~ (F( t )  - G( t ) )  - (F( t )  - ~mG(t)) = (~m - 1)F(t) 

is of degree <_ O, a contradiction to deg F( t )  > O. 
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(b) Without loss of generality ( - 4 )  1/4 C K, so that - 4 K ( t )  4 = K(t)  4. Let 

r __ 2 be an integer that divides m. By (a), with r instead of m ,  F ( t )  m - a = 

( F ( t ) m / " )  ~ - a  ~ K ( t ) L  Therefore the assertion follows from [L, Theorem VI.9.1]. 
| 

L E M M A  3.4: Let f ( t ) E Z[t] be a monicpolynomial of degree d >_ 1 with f (O) ~ O. 

Then there is an irreducible 2-cyclic Galois cover X ~ p1 whose fibre over x, 

X(x) --~ ~ is a connected mock cover ramified only at ( f)  (where (f)  is regarded 
1 a.s a closed subset ofSpec(Z[t]) = A~ C P~) and whose pullback to X --+ P~[[~]] 

is a regular and irreducible cover. 

Proof: Consider f ( t )  as a polynomial in Z[x, t]. Let b(x, t) = f ( t )  2 - 4x. It 

follows from Lemma 3.3 that  b(x,t) is not a square in Z[x] or Z[[x]][t], the com- 

pletion of Z[x] at (x). Since b is the discriminant of the polynomial y2 _ f ( t ) y + x ,  

this polynomial is irreducible over K = Frac(Z[x]) a n d / (  = Frac(Z[[x]])); thus 

L = K(t)[y]/(y 2 - f ( t ) y  + x) is a field. Let S be the integral closure of Z[x,t] 

in L. Then S is a domain and S is finite over Z[x, t] since Z[x, t] is a Noethe- 

rian normal domain [Mat, Chap. 12, Prop. 31.B]. Now Spec(S) -+ /~[x] is an 

irreducible (Definition 2.7) non-trivial two-to-one cover of Spec(Z[x, t]) ramified 

only at b(x,t).  The fibre over (x), given by the equation y2 _ f ( t ) y  = 0, is a 

connected mock cover ramified at (f) .  Consider the cover X ~ Plz[z ] where 

X is the normalization of PI[~ l in Spec(S). Observe that  the fibre over (x) is 

unramified at the point t = co. The pullback )(  -~ pl[[~]] is irreducible since 

y2 _ f ( t ) y  + x is irreducible in K(t)[y]. The central fibre Xx -+ P~ is mock since 

it is so generically and is unramified at t = 0 since f(0)  ¢ 0. Thus any point 

of Spec(Z[[x]][t]) whose reduction mod (x) is (t) is unramified. It follows from 

Proposition 3.2 that the cover is regular. II 

To construct the remaining covers--i.e, odd prime power cyclic covers and the 

remaining even cyclic covers--we will work in steps. We first construct cyclic 

covers of A~[~] that  are mock on the fibre over (x). We then show we can control 

the branch locus on this fibre. Finally we complete these to covers of pl[~], show 

that  the fibre over x = 0 is connected and unramified at infinity and that  the 

pullbacks to P~[[x]] are regular and irreducible. 

We introduce some notation to be used throughout this section. Let K = 

Frac(Z[x]) = Q(x). Let p be a prime number, let q = p~ for some n and let ~q 

be a primitive qth root of unity. Define K r = K[~q] and let R ~ be the integral 

closure of Z[x] in g '  (i.e. R' = Z[~q,x]). 
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Now we are ready to show the existence of odd irreducible p~-cyclic Galois 

covers of A~[~] that  are mock on the fibre over (x). We state the following 

proposition that  we will prove by cases in subsequent lemmas. The lemmas 

follow tile proofs of the cases and subcases in [H2, Prop. 2.2,ii]. 

PROPOSITION 3.5: Let  f ( t )  E Z[t] be a monic polynomial of  degree d > 1 with 

f(0) ~t 0. Let q ~ 2 be a prime power. Then there is an irreducible q-cyclic 

Galois cover Spec(S) -~ Q[~] whose fibre over (x), Spec(S /xS)  --~ A~, is a mock 

cover. Moreover, this cover may be chosen so that the pullback to the cover 

Spec(S') --~ Ah, has a corresponding extension of fraction fields K ' ( t )  C Frac(S') 

given by a polynomial of  the form yq - B(x ,  t), where B(x ,  t) E Z[x, t], B(x ,  t) =- 

f ( t )  r rood(x) for some r > 1 and yq - B ( x , t )  is irreducible over Z[[xl][¢q,t]. 

We first prove Proposition 3.5 for odd prime powers, following [H2, Prop. 2.2, 

Case I]. 

LEMMA 3.6: Let f ( t )  E •[t] beamonicpo tynomia lo fdegreed  > 1 with f(O) 7t O. 

Let  q be an odd prime power. Then Proposition 3.5 is true for q. 

Proo[: Consider f ( t )  as an element of Z[x, t]. Write q = p'~ for some odd prime 

number p. 

We will use Saltman [Sa, Thm. 2.3] to construct a q-cyclic extension of Z[x, t]. 

Since q is odd, G a l ( K ' / K )  is a cyclic group of order s < q, with generator 

~-: ~q --+ ~ ,  where m is a generator of (Z/qZ)×. Note that m s _= 1 (mod q) so 

there is some k such that m s - qk = 1. 

Let b(x, t) = f( t )q - ~qp2X. It follows from Lemma 3.3 that b(x, t) is not a p-th 

power in R'[t] or in Z[[x]][~q,t]. 

Let B(x ,  t) = M(b) where (as in [Sa, Lemma 2.2]) 

s - -1  s - -1  
• . ~ a - - l - - i  

M(b) = H T ' ( b ) ' : - ' - '  ----- H ( f ( t )q --T'(¢q)p2x) " 
i = 0  i = 0  

Observe that  B(x ,  t) is a product of s relatively prime polynomials in in E[t], 

where E is some field that  contains Q(¢q, x). By Lemma 3.3 none of the factors 

is a p-th power of a polynomial in E[t], thus B(x ,  t) is not a p-th power. 

By [L, Theorem VI.9.1], yq - B(x ,  t) is irreducible over R'[t] and Z[[x]][¢q, t], 

thus L'  = g' ( t )[y] / (yq - B ( z , t ) )  is a field with G a t ( L ' / g ' ( t ) )  generated by 

a : y --+ ~qy. As in [H2, Prop. 2.2], since 

(ymb-k)P" = M(b)mb -kp" = T(M(b))  = T(yP"), 
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T can be extended to an au tomorph i sm of L' over K(t) by defining T(y) := 

ymb(x, t) -k where k, as defined above, is the integer such tha t  m s - kq = 1. The  

order  of 7 is s, since 

T~(y) = ym'M(b)-k  = y. 

By [Sa, Thm.  2.3], a and T commute  and L' descends to a q-cyclic Galois 

extension of K( t ) ,  i.e. there exists an extension L of K(t)  such tha t  

L' = L ®K K'(t) 

where L is the  fixed field of ~- : L ~ -~ L t. Let S r, S be  the integral  closures of 

Z[x, t] in L ' ,  L. Now S and S '  are domains  and are finite over Z[x, t] since Z[x, t] is 

Noether ian  and normal  [Mat, Chap.  12, Prop.  31.B]. Therefore  Spec(S) --~ A~[xl 

is an irreducible cover of A~[x] It  follows from Remark  2.8.b tha t  the cover is 

locally irreducible. The  pullback Spec(S ~) ~ A~, has a corresponding extension 

of f ract ion fields K'(t)  C_ Frac(S ' )  = L' .  The  extension K'(t)  C L' is given by 

the polynomia l  yq - B(x,  t) and B(x,  t) - f(t)~mod(x) for appropr ia te  r. 

We now show the fibre over the ideal (x), Spec(S/xS) -+ A~, is a mock  cover. 

Let  z = y + ~-(y) + ~-2(y) + . . .  + T~-~(y) • S'. We defined L as the fixed field 

o f  7 .  

C L A I M :  L = K(t)[z]. 

To prove the  claim, observe tha t  z e L and [L:  g ( t ) ]  = [L ' :  g ' ( t ) ]  = q, so it 

suffices to show tha t  [g(t)[z]: g ( t ) ]  > q. 

Consider  the basis 1, y , . . . ,  yq-1 of L '  over K'(t). Since yq = B(x,  t) C g ' ( t )  × , 
for each integer j the element yJ lies in the Kl ( t ) - subspace  spanned by y3, 

where ~ = j mod  q. So if j l , . . . , j s  are integers non-congruent  modulo  q, then  

y j l , . . . , y j ~  are linearly independent  over K~(t). In part icular ,  since s is the  

order  of m in (Z/qZ)  × , the numbers  1 , m , . . .  , m  s-1 are non-congruent  modulo  

q, and  hence y, y m . . . ,  y m  ~-~ a r e  l inearly independent  over Kt(t). But  from 

T(y) := ymb(x, t) -k  we see tha t  ym' • Ti(y)g,(t) ,  and so y , ' r ( y ) , . . . ,  TS-l(y) are 

l inearly independent  over K~(t). 

Since a(y) = ~qy, 

o (z) = o (y) + + - . -  + 

= + + . . .  + 

and h e n c e a i ( z )  = aJ(z) iff¢~ = CqJ i f f i  = j (mod q). Thus  z has q d i s t i n c t  

conjugates  over g' ( t ) ,  and hence [g(t)[z] : g] > [g'(t)[z] : g'] >> q. 
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We follow an a rgumen t  from [H2, Prop  2.2] to construct  a section of Spec(S)  --+ 

A~[x] over A~. Define S~ = R'[t ,y]/(yq - B ( x , t ) )  and observe t ha t  S '  is the 

integral  closure of S~ since B ( x , t )  c R'[t]. Recall t ha t  T~(b) ---- f ( t )q  m o d  x. 

Define a h o m o m o r p h i s m  ¢~:  S~ -+ (R' /xR')[ t]  by sending each element  of R'[t] 

to its canonical  image in (R' /xR')[ t]  = Z[~q, t] (note tha t  x ~-~ 0) and sending 

y ~ f l+m+'~2+'''+m~-I (or in Sa l tman ' s  notat ion,  y ~-+ M ( f ) ) .  We would like to 

extend ¢~ to a m a p  from S '  into (R' /xR')[ t] .  Consider the point  a = (0, M ( f ) )  

on the K ~ curve yq - B(0,  t). The  point  a is K ' - ra t iona l ,  and a is simple,  since 

we chose f so tha t  f (0 )  ~ 0 and hence the  par t ia l  derivat ive O/Oy of the curve 

is not zero at  this point.  It  follows from [JAR, Cor. A3] tha t  ¢~ can be extended 

to a m a p  L' --~ Frac((R' /xR')[ t]) .  Since S '  is the integral closure of S~ and 

( R ' / x R ' )  [t] is integrally closed we conclude tha t  ¢~ extends  to a h o m o m o r p h i s m  

¢': s' (R'/xR')[t]. 
Now 

¢ 'T(y)  = ¢ ' (ymb-k )  =- f m+m2+m3+'''+ms-kq : f l+m+m2+'''+m~-I ~- ¢ ' (y)  

since m s - kq = 1. Thus  ¢ 'T = ¢' .  

Observe  t ha t  z is integral  over Z[x, t] since ~-(y) = ymb-k  is a root  of the monic  

polynomia l  Z q - T ( B ( x , t ) ) .  Hence S is the integral closure of So -- Z[x , t ,  z] 

in L. Consider  ¢ = ¢ '  Is and note ¢(z)  = ¢(y  + T(y) ~- " . .  ~- T S - l ( y ) )  

s f  l+m+m2+'+'c -1  E Z[t]. Now we have ¢: S --+ Z[t] and this induces S / x S  -+ 

Z[t]. Thus  Spec(S)  --+ A~[x] has a section over A~. But  this cover is Galois,  so 

we have shown the  fibre over (x) is a mock cover. | 

We continue by proving Proposi t ion  3.5 for powers of 2, i.e. we show the exis- 

tence of 2n-cyclic covers (n > 1) of A~[x] wi th  mock  fibres over (x). We t rea t  the  

case n = 2 separately,  following [H2, Prop.  2.2, Case II,  Subcase  b]. 

LEMMA 3.7: Proposit ion 3.5 is t rue for q ---- 4. 

P r o d :  First  note  t ha t  K I = K(~4) = K( i ) .  Let n: i ~-~ - i  (complex conjugat ion)  

be the  genera tor  of the Galois group G a l ( K ' / K ) .  Consider f ( t )  as an e lement  of 

Z[x, t]. Let  B(x ,  t) = ( f ( t )  + 4 ix )3( f ( t )  - 4 i x )  and define 

n I = K' ( t ) [y] / (y  4 - B ( x , t ) ) .  

By L e m m a  3.3, yq - B ( x , t )  is irreducible in R'[x,t] and Z[[x]][~qt]. Hence L '  is 

a field. T h e  extension is a 4-cyclic Galois extension with  Galois group genera ted  

by a: y ~-~ iy. Since 

( y - - l g ) 4  = b-3t~(b)-lg4 = ~;(b3~(b)) = t~(y4), 
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we may extend n to an au tomorphism of L' over K ( t )  by defining n(y) = y - l g  

where g = (f2 + 16x2). From the proof of [Sa, Thm.  2.4] (taking in Sal tman 's  

notat ion,  b = f - 4ix,  z = f2  + 16x 2 = g, a = B ( x ,  t)),  n is well-defined, an  = na  

and L t descends to a 4-cyclic extension L of K ( t )  where L is the fixed field of n. 

Let  S t, S be the integral closures of Z[x, t] in L t, L. Then  S and S t are domains  

and are finite over Z[x, t] since Z[x, t] is a Noetherian normal domain [Mat, Chap. 

12, Prop.  31.B]. Therefore  Spec(S) --+ A~[~] is an irreducible cover. It  follows 

from Remark  2.8.b tha t  the cover is locally irreducible. By the definition of S' ,  

the  pullback Spec(S ' )  -+ A~, has a corresponding extension of fraction fields 

K ' ( t )  C Frac(S t) = L'.  The  extension Kt( t )  C L'  is given by the polynomial  

yq - B ( x ,  t) and B ( x ,  t) =- f ( t ) r m o d ( x )  for appropria te  r. 

We now show the fibre over (x) is a mock cover. Let z = y + n ( y )  C S t . 

We defined L as the fixed field of n. Note tha t  L = K(t)[z] since the a j (z) = 

iJy + ( - i ) J n ( y )  are distinct for 0 < j < 3. 

We follow an argument  from [H2, Prop.  2.2] to construct  a section of Spec(S)  -~ 

A~[,] over A~. Define S~ = R'[t, y]/(yq - B (x ,  t)) = Z[i, x, t, y] and observe tha t  

S '  is the integral closure of S~ since B ( x ,  t) E Rt[t]. Define a homomorphism 

¢~: S~ --+ (R ' /xRt )[ t ]  by sending each element of R'[t] to its canonical image 

in (R ' / xR ' ) [ t ]  and sending y ~ f .  Note that  ¢~(x) = 0. This homomorphism 

extends  to a homomorphism ¢': S t -+ (Rl/xR~)[t] since S' is the integral closure 

of S~ and (R ' / xR ' [ t ] )  is integrally closed. Observe tha t  z E S'  since n(y) = y - l g  

satisfies the monic polynomial  Z 4 - B (x ,  t). Thus S is the integral closure of 

So = Z[x , t , z ]  in L. Consider ¢ = ¢'  Is and note ¢(z)  = ¢ ( y + n ( y ) )  = 2 f  E 

Z[x, t]. Therefore  ¢: S -+ Z[t] and so Spec(S) -+ A~[,] has a section over A~. 

But  this cover is Galois, so the fibre over (x) is a mock cover. | 

We finish the cases needed to prove Proposi t ion 3.5 by construct ing the desired 

2'~-cyclic Galois covers for n > 2, following [H2, Prop.  2.2, Case II, Subcase c]. 

LEMMA 3.8: Let  f ( t )  e Z[t] b e a m o n i c p o l y n o m i a l o f d e g r e e d  >_ 1 wi th  f(O) # O. 

Let  n > 2 and q = 2 n. Then Proposit ion 3.5 is true for q. 

Proof: If n > 2, then K t = K(~q) is Galois over K with Galois group 

z/2z • z/sz 

where s E 2Z and s = 2 n-2,  with the first factor generated by n: ~q ~ ~-1 

(complex conjugation) and the second factor generated by T: Ca -+ ~5. 

Consider f ( t )  as an element of Z[x,t]. Let b(x , t )  = f ( t )q  + 4~qX and let 

a = b2~- '+ln(b)  2~-1-1 Now define B ( x , t )  = M ( a )  where M ( a )  is Sal tman 's  
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construction,  described in Lemma 3.6 (with m = 5), and let k = (5 ~ - 1)/q. By 

Lemma 3.3, b(x, t) is not  a square and hence a and B(x,  t) are not squares in 

R'[t] or Z[[x]][~q, t]. Thus  yq - B(x,  t) is irreducible in R'[t] and Z[[x]][~q, t]. Let 

L' = K'(t)[y]/(yq - B ( x , t ) )  with Gal(L'/K'(t))  generated by a: y -+ ~qy. Then  

L ~ is a field. We may extend n and T to au tomorphism of L' over K~(t) as follows: 

Since 

(yha-k)2n = M(a)h a -2'~k = ~-(M(a) ) 

we may define T(y) = yha-k. Since n and ~- commute,  we have 

M(a)n(M(a))  = M(a)M(n(a))  = M(an(a)) = M(b2~n(b) 2~), 

so we may define n(y) = y-IM(bn(b)).  One may check tha t  the orders of n 

and T are preserved (ord(n) = 2, ord(r)  = s) and tha t  n,T and a are pairwise 

commutat ive.  By [Sa, Thm.  2.7], L '  descends to a q-cyclic extension, L of K(t) 
where L is the fixed field of the subgroup of Gal(L'/K(t))  generated by n and T. 

Let S, S ~ be the integral closures of Z[x, t] in L, L ~. Then  S and S ~ are domains  

and are finite over Z[x, t] since Z[x, t] is a Noetherian normal  domain [Mat, Chap.  

12, Prop.  31.B]. Therefore Spec(S) ~ A~[x] is an irreducible cover. It  follows from 

Remark  2.8.b tha t  the cover is locally irreducible. The  pullback Spec(S ' )  --+ A 1, 

has a corresponding extension of fraction fields K'(t) C Frac(S ' )  = L'.  The  

extension K'(t)  C L' is given by the polynomial  yq - B ( x , t )  and B(x , t )  - 
f ( t )"mod(x) for appropr ia te  r. 

We now proceed to show the fibre over (x) is a mock cover. 
s-1 Ti Let z = ~-~i=i ( ( Y )  + Tin(Y)) E S'. We defined L as the fixed field of T 

and n. 

CLAIM: L = g(t)[z]. 

To prove the claim, it suffices to show, as in Lemma 3.6, tha t  z has q distinct 

conjugates  over Kl(t). As there, if {Ji}i are integers non-congruent  modulo  q, 

then {yJ~ }i are linearly independent  over K'(t).  In particular,  

y, y h , . . . ,  y58-1 , y - l ,  y - 5 , . . . ,  y-58-1 

are linearly independent  over Kt(t). By the definitions of n(y) and T(y), SO are 

y, T(y) , . . . ,  TS--l(y), t~(y), I'~T(y),..., t~TS--l(y). 

Since 
s--1 

a J ( z )  J s ' ~  " 

i=1 
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aJ(z) = aJ'(z) iff(q j = ~ '  iff~ jh' = ~q j'5* for every i i f f j  - - j '  (mod q). 

We again follow [H2, Prop 2.2] to construct a section of Spec(S) -+ A~[~] over 

A~. Once again define S~ = R'[t, y]/(yq - B(x,  t)) and oberve S' is the integral 

closure of S~ since B(x , t )  • R'[t]. Define a homomorphism ¢~: S~ --+ (R'/xR')[t] 

by sending each element of R'[t] to its canonical image in (R~/xR')[t] and sending 

y ~-+ f q(1+5+52++5~-~) (or in Saltman's notation, y ~-~ M(fq)) .  This extends to 

a homomorphism ¢': S' -~ (R'/xR')[t] since S' is the integral closure of S~ and 

(R ' / xR ' )  [t] is integrally closed. Now 

¢'7(y) = ¢'(yha-k) = f q(5+52+5a+'' '+5~)-kq~ ---- f q(1+5+52+'''+5~-1) = ¢'(y) 

since 58 - kq -- 1. Thus ¢'~- -- ¢'. Also ¢'(~(y)) = M ( f )  = ¢'(y). 

Observe that  z is integral over Z[x, t] since T ( y )  ~- yha-k is a root of the monic 

polynomial Z pn - B ( x , t ) h a  -qk and a(y) = y- lM(b/a(b) )  satisfies the monic 

polynomial Zq - ~(B(x, t)). Thus S is the integral closure of So = Z[x, t, z] in L. 

Consider ¢' [s and note ¢(z) 8-1 = + = • 

Z[t]. Therefore ¢: S --+ Z[t] and so Spec(S) --4 A~[x] has a section over/k~. But 

this cover is Galois, so the fibre over (x) is a mock cover. | 

We may now prove Proposition 3.5: 

Proof: The result follows immediately from Lemma 3.6 if q is odd, Lemma 3.7 

if q = 4 and Lemma 3.8 if q = 2 n with n > 2. | 

We have constructed irreducible q-cyclic Galois covers Spec(S) --+Spec(Z[x, t]) 

that are mock on the fibre over (x). We continue by showing that these mock 

fibres are ramified only over the polynomial ( f )  that was specified in Proposition 

3.5. 

LEMMA 3.9: Let f ( t )  • Z[t] beamonicpolynomialofdegreed > 1 with f(O) ~ 0 

and let q -- pn be a prime power. Then there is an irreducible q-cyclic Galois 

cover Spec(S) --~/~[x] whose fibre over (x), Spec(S/xS) ~-~ A[, is a connected 

mock cover ramified only at ( f )  (where (f)  is regarded as a dosed subset of 

Spec(Z[t]) = A~). Moreover, this cover may be chosen so that the pullback to 

the cover Spec(S') -~ A~, has a corresponding extension of fraction fields K '  (t) c 

Frac(S') given by a polynomial of the form ya _ B(x,  t) where B(x,  t) • Z[x, t] 

and B(x,  t) - f ( t )  ~ mod(x) for some r >_ 1 and yq - B(x,  t) is irreducible over 

z[[x]] t]. 

Proof: If q = 2 the conclusion follows from Lemma 3.4. 
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If q ~ 2, there exist irreducible q-cyclic Galois covers Spec(S) --+ /~[=] that  

are mock on the fibre over (x), by Proposition 3.5. As in the proposition, we 

may assume that  the pullback to the cover Spec(S t) ~ A 1, has a corresponding 

extension of fraction fields Kt( t )  C Frac(S t) given by a polynomial of the form 

yq - -  B(X, t), where B(x ,  t) C Z[x, t], B(x ,  t) - f ( t )  ~ mod(x) for some r _> 1 and 

yq - B (x ,  t) is irreducible over Z[[x]][~q, t]. 

Let L'  = Frac(S') ,  L = Frac(S). 

Let 2 be the ideal in Rt[t] generated by B(x ,  t). The extension Z[x, t] C S t 

is unramified except over the contraction in Z[x, t] of 3 and possibly primes 

containing (p). Thus Z[x, t ] C  S is unramified except over these primes. We 

proceed to show that  Z[x, t] is unramified over primes containing (p). We will 

therefore conclude that  Z[x, t ] c  S is ramified only over the contraction of 2. 

Thus in the fibre over (x), it is ramified only over (f) .  

First note the extension Z[x, t] C Rt[t] is ramified only at primes containing 

(p). Now we show R~[tl C S ~ is ramified only over 2: 

Let P be a prime ideal of S t containing (p) that  does not contain B(x ,  t). Note 

that  such a P exists since B ( x , t )  - f ( t )  rq rood p2 and p A f ( t )  since f ( t )  is 

monic, hence B(x ,  t) ~ V / ~ .  Let p = P N Rt[t] and let (_0 be the completion of 

R ~[t] at the prime p. 

Let 
Y L t 

= f(t)--- T E 

and let 
a = "d = B ( z ,  t) 

f( t)qr • 

Since p2 c p and B(x, t) ¢ p, we have f(t) ¢ p. Thus a ~ R'[t]p and a = 

] mod p2. Hence a = 1 + p2p for some p E O. 

Observe that  p'~ Jf n!, hence "y = a 1/p E (9, since we may write the Taylor 

expansion of 7 = al/p as 

al/p ---- ~ (p2p)n = n k = l  ( - = (1 - kp) pn. 
n=0 n=0 n!pn n=0 k=l  

As L' = K'( t ) (y )  = K'(t)(~/), it follows that  L'  is contained in the quotient 

field of 6 .  But since (9 is integrally closed and S ~ is the integral closure of Rt[t] 
in L, we get S '  C (0, and, since O is a l o c a l  ring, S~ C 0 .  As (~/R'[t]p is 

unramified, so is S~p/Rt[t]p, i.e., S'/R'[t] is unramified at P and so the extension 

Rt[t] C S '  is ramified only over B(x ,  t). 
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To show that  the extension Z[x, t] C S is unramified at primes containing (p) 

we will again work in the complete local ring. 

Let P C Z[x, t] be a prime containing (p) but not the contraction of B(x,  t). 
Then by the Lying Over Theorem, P = p n Z[x, t] for some prime p C R'[t] such 

that  p contains (p) but not (B(x, t)). Let (~z[x,t]p be the completion of Z[x, t]p. 
The extension Z[x, t ] C  R'[t] is totally ramified at P, since the extension Z c Z[~q] 

(where q = pn) is totally ramified at (p). Hence (~n'[tb = R'[t] ®z[~,t] (~z[x,tlp 

is a domain. By the above S' = S' ®z[,,t] (gz[x,t]p = (gR'[t], SO S' and S = 

S ®z[z,t] Oz{x,t]z are domains. Recall that 

S ®Z[x,t] R'[t] = S'. 

Tensoring both sides of this equation with Oz[~,t]e yields 

®Oztx,~lp On, tt], = S'. 

The above are domains; thus we have shown that S is linearly disjoint from 

6n,[tb over C6z[x,t]e. Since S c S' and S' = ~)n'[tb we have S C (~n'[t]," These 
two domains are linearly disjoint over Oz[z,t]e so their intersection is Oz[x,t]e. 

We conclude S = Oz[x,t]e so the extension Oz[~,t3e c S is ~tale. Therefore the 
extension Z[x, t]p C S ®Z[z,t] Z[x, t]p is 6tale and thus unramified at P. [Ha, III, 

Ex. 10.3,4] 
We showed earlier that  Z[x, t ] C  S is ramified only at the contraction of 3 and 

possibly primes containing (p). We have just proven Z[x, t] C S is unramified at 

primes P that  contain (p) but not the contraction of (B(x, t)); hence Z[x, t] c S 

is ramified only over the contraction of 3. So modulo (x) is ramified only at (f).  
It remains to show the fibre over (x), Spec(S/xS),  is connected. The extension 

Y-~t] C S / x S  is totally ramified over (f). By the Lying Over Theorem, the 

fibre over any maximal ideal containing (f) is non-empty and, as the extension 

is totally ramified over (f),  it consists of a single point. Hence Spec(S/xS) is 

connected. II 

We have constructed q = pn-cyclic covers of A~[x] that are mock on the fibre 

over (x) and have specified branch loci. To complete these to G-Galois covers 
1 X --+ P~[~] whose fibres over (x) are unramified at the point t = c¢ and whose 

1 pullbacks to G-Galois covers )( --~ Pz[[~]l are regular and irreducible, we use the 

following lemma: 

LEMMA 3.10: Let q = pn for some prime p, let l be a positive integer. Let 
C(x, t) e Z[x, t] be a monic polynomial in t. Let C(t) be the reduction of C(x, t) 



Vol. 114, 1999 GALOIS GROUPS AND COMPLETE DOMAINS 339 

rood(x) and suppose the degree in t of C(x, t) = degC(t) = ql. Further, assume 

that C(x,  t) is not a p-th power in Q(x, t). Then L = Q(x, t)[y]/(yq - C(x, t)) is 

a field. Let S be the integral closure ofZ[x, t] in L, corresponding to a morphism 

Spec(S) --+ Alz[~l" Let X be the normalization ofl?~[,:] in Spec(S). Then the fibre 

of the morphism X --+ ~[~] over (x), i.e. X ,  ~ ~ ,  is unramified over t = co. 

Proof." By [L, Theorem VI.9.1], yq - C(x, t) is irreducible, hence L is a field. 

Let So = Z[t, x, y]/yq - C(x, t). Observe that S is the integral closure of So 

in L. Now A~z[~] is the affine t-line over Z[x]. Consider this as one a n n e  patch 

of the projective tqine over Z[x] where the other affine patch has coordinate 

and the transition function on the overlap is given by t t  = 1. Consider the 

morphism Xo -+ l? 1 given on the t patch by the above extension of domains zM 

and given on the t patch by the ring extension Z[z, t~ C S0 = Z[x, t-, fl]/~Sq-C(x, t~ 

where 9 = fry and C(x,t-) = t~qC(x,t). Since 9 q - C(x,t-) = [lq(yq _ C(x , t ) ) ,  

the morphisms Spec(S0) --+ Spec(Z[x, t]), Spec(So) --+ Spec(Z[x, []) agree on the 

overlap, Spec(Z[x, t, [ ] / ( t [ -  1)) via the transition function 9 = fly. Since C(x, t) 

is monic as a polynomial in t, by definition of So, Z[x, t-] c 5'0 is &ale over t-= 0, 

i.e. X0 --+ tFl[~] is &ale over t = oc. Observe that X is the normalization of Xo. 

The fibre X~ --+ ~ is unramified over t = oc since the equations defining the 

fibre have the same t degree as the equations defining the cover. | 

Now we may prove the following lemma. 

LEMMA 3.11: Let f ( t )  C Z[t] be a monic polynomial of degree d >_ 1 with 

f(0)  # 0 and let q be a prime power. Then there is an irreducible q-cyclic Galois 

cover Spec(S) --+ /~[z] whose fibre over (x), Spec(S/xS)  -+ A~, is a connected 

mock cover ramified only at the locus of ( f)  in Spec(Z[t]) = A~ C P~ and whose 
1 pulIback to 2 --+ I?~[[~1] is a regular irreducible cover. Moreover, this cover may 

be chosen so that the pullback to the cover Spec(S') --+ A~, has a corresponding 

extension of fraction fields K' ( t )  C Prac(S') given by a polynomial of the form 

yq - B (x , t )  where B(x , t )  e Z[~q,X,t], B (x , t )  =- f ( t )"  mod(x) for some r >_ 1 

and yq - B(x,  t) is irreducible over Z[[x]][~q, t]. 

Proof: By Lemma 3.9 there is an irreducible q-cyclic Galois cover Spec(S) -+ 

A~[,l whose fibre over (x), Spec(S /xS)  -+ A 1, is a connected mock cover ramified 

only at ( f )  such that  pullback to the cover Spec(S') --~ A 1, has a corresponding 

extension of fraction fields Kt(t)  C Frac(S') given by a polynomial of the form 

yq - B ( x , t )  where B(x , t )  e Z[x,t] and B(x , t )  - f ( t )  r mod(x) for some r >_ 1 

and yq - B(x ,  t) is irreducible over Z[[x]][¢q, t]. 
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Let X be the normalization of P~[x] in Spec(S). By Lemma 3.10, X -~ P~[x] 

is unramifed at t -- oo. The fibre over (x) is a connected mock cover, since it is 

so generically. 

To complete the proof we show that the pullback )(  -~ Plz[[xl ] is regular and 

irreducible with a connected mock fibre over (x). The pullback of X -+ P~[x] to 

) (  -+ F~[[~]} is irreducible since y q  - -  B(X, t) is irreducible over Z[[x]][~q, t]. It is 

locally irreducible since Spee(S) --+/~[~] is locally irreducible. The central fibre 

is a connected mock cover and is unramified at t = 0 since the fibres over x = 0 

(which is the central fibre of )~ --+ P~[[~]]) of )~ --4 P~[[~]] and X --+ P~[~] are the 

same and the fibre over (x) of the cover X ~ Pz[x] is unramified at t = 0 since 

f(0)  # 0. Thus any point of P~[[,]] whose reduction mod (x) is (t) is unramified. 

It follows from Proposition 3.2 that the cover is regular. | 

We next prove a proposition extending [H3, Prop. 2.2] which will allow us 

to pardi  these cyclic covers together. The key step in the proof, as in [H3], 

is Grothendieck's Existence Theorem [Gr2, Cor. 5.1.6]. That  result asserts an 

equivalence of categories between formal sheaves of modules (Definition 2.19) 

and coherent sheaves of modules on a variety that is proper over an a-adically 

complete domain. Since an equivalence of categories preserves morphisms, it 

ibllows that there is a corresponding equivalence between coherent and formal 

sheaves of algebras, and similarly between covers and formal covers (viewed as 

the spectra of certain sheaves of algebras). In our situation, the cyclic covers, 

together with patching data on the central fibre, will define a formM sheaf of 

algebras, and as a result we wilt obtain a global G-Galois cover. 

PROPOSITION 3.12: Let G be a finite group and let H b  . . . , Hr C G be subgroups 

which generate G. Let R be a normal domain that is complete with respect to 

a non-zero prime ideal a. Let Y be an integral scheme and let Y --+ Spec(/~) be 

a proper morphism of finite type. Define Y, to be the fibre of this morphism of 

over a, i.e. Ya = Y Xspec(~) Spec(/~/a). Let Zi ~ Y be a regular irreducible Hi- 

Galois cover with group Hi and branch locus Li, whose central fibre Zi,,  --+ Ira 

is a mock  cover. Let Ui -- Y \ Uj¢i  Lj  and let Li,a,Ui,a be the central fibres of  

Li,Ui. Suppose that Ll.a,..,Lr, a are pairwise disjoint in Ya. 

Then there exists a connected G-Galois mock cover X~ ~ Y,  whose inverse 

image over Ui,o agrees, as a G-Galois cover, with the induced cover, Xi,~ ---- 

IndCH, Zi,a --~ Ya (Definition 2.21). 

Moreover, there is a unique regular irreducible G-Galois cover X -+ Y 

whose central fibre is Xa and which agrees with Xi  = Ind , ,  Zi over the formal 

completion (Definition 2.17) of Ui at a. 
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Proof'. Form the G-Galois mock cover Xa --+ Ya where the cover on the Ui is 

given by the restriction of Xi,a --+ Ya and the patching on the overlap is is given 

by the G-labeling of the sheets. Let Ui,a- := Uz ×Spec(&) Spec(/~/a ' )  • By Hensel's 

Lemma [B, III.4.3, Thm. 1], the cover Xi is trivial over the formal completion 

of U = Ui \ Li at a for all i. For each i, Ui is an affine set, thus we may write 

U~ = Spec(Ei) for some ring Ei. Let Ei,a~ = Ei ®AR/a ~. Let Ya~ = Y ×& R/a ~. 
Form the G-covers X ~  --+ Ya~, where the cover on (the aitine subset) Ui,~- is 

(a'H~) given by X~,~. = Spec(Ei,a; ) and the patching on the overlap is induced by 

the G-labeling on the fibre Xa. Let 8~ be the inverse limit over v of the Ei ,~ .  

Then the g~G:g~) define a coherent formal sheaf of G-algebras g over the formal 

scheme Y := limYa~. By Grothendieck's Existence Theorem [Gr2, Cor. 5.1.6], 

this is induced by a unique coherent sheaf of G-modules on Y, i.e. there exists a 

unique coherent sheaf of G-modules g such that  g is the formal completion of £. 

By the comment preceding the proposition, g is canonically a sheaf of separable 

algebras and in fact defines a G-Galois cover. Namely, let X = Spec(g). Then 

X -+ Y is a G-Galois cover whose mock central fibre is Xa and which agrees with 

Xi over the formal completion of Ui at a. 

To show X is unique, suppose X'  --+ Y is a G-Galois cover with (mock) central 

fibre X~ and suppose X ~ agrees with Xi = IndaH~Zi over the formal completion 

of Ui at a. Then Xa~ agrees with X ~  over Ui. By Hensel's Lemma, X ~  and 

X ~  are trivial away from the branch locus, i.e. the irreducible components of 

each are copies of the base labeled by the elements of G. Hence the G-labeling 

on Xa gives the patching data on the overlaps X ~  Iv~nge and X ~  Iu~nv¢ for 

each v. Therefore X and X '  induce the same formal sheaf. It follows from the 

uniqueness assertion in Grothendieck's Existence Theorem that X ~ X t. 

Now we proceed to show that X is irreducible. We do this by first proving the 

fibre Xa is connected, then by proving X is connected. 

Let X~ be the connected component of the G-Galois mock cover X~ containing 

the identity sheet of Xa. In each induced cover Xi = IndaH~ Zi, the sheets labeled 

by elements lying in the same coset gHi lie in the same connected component 

of Xi,~. Therefore, if an irreducible sheet of X~ labeled by some element g is in 

X~, then for i = 1 , . . . ,  r and for all hi E Hi, the sheet labeled by ghi is in X~. 

But G is generated by H 1 , . . . ,  Hr.  Let g~ = hlh2""  h~. Now the sheet labeled 

by hi is in the same connected component as the identity sheet. By induction 

g~ = h i - - "  h~ lies in the same connected component as the identity sheet. It 

follows that  every sheet of X~ lies in X~ so we have shown Xa is connected. 

We may now show X is connected: Let X ~ be the connected component of X 
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containing X, .  Since/~ is complete with respect to a, 1 - a is invertible for all 

a C a. Hence a _c Jac(/~), the Jacobson radical of /~ [Mat, p. 10]. Since Jac(/~) is 

the intersection of all maximal ideals m C/~,  we have a C m. By hypothesis, Y 

is proper over Spec(/~). By the definition of properness [Ha, p. 100], the image 

of ally closed point is closed. Therefore all the closed points of Y are contained 

in Ya. Since Xa C X ' I  the image of X - X '  contains no closed points of Y. Also, 

X -+ Y is a proper morphism, and the image o f X  \ X '  is closed. Since this 

image contains no closed points, the image and hence X \ X '  are empty and we 

have shown X is connected. 

Observe that  X is locally irreducible at the unramified points since X is ~tale 

over Y at these points. At the ramified points, by construction X is locally 

isomorphic to Zi for some i and the Zi are irreducible. Thus we have shown X is 

connected and locally irreducible; hence by Remark 2.8, X is irreducible. | 

We now apply this patching result to the cyclic covers in Lemma 3.11. In order 

to do this first observe that  there are an infinite number of non-constant pairwise 

relatively prime polynomials in Z[x], and we may choose a set of polynomials 

{fi} such that  fi(0) ~ 0 for each i. We can now show that  we can realize all 

finite groups G as Galois groups of regular irreducible G-Galois covers of P~[[~]]. 

THEOREM 3.13: L e t  G be a f in i te  group. T h e n  there exis ts  an i rreducible  G-  

Galois  cover  X --+ PliM 1. Moreover ,  this  cover can be chosen so tha t  the central 

fibre is a m o c k  cover, unramitied at t = O, the  cover  is regu/ar and  the  branch  

locus  is defined over X (Def ini t ion 2.15). 

Proof:  Let g l , . .  •, g~ be generators of G chosen so that  the order of each gi is a 
r t  i prime power, Pi • Choose r pairwise relatively prime non-constant polynomials 

f i( t)  E Z[t] with fi(0) ~ 0 for each i. For example, choose f i ( t )  = $ - i, i = 

1 , . . . ,  r. By Lemma 3.11, there is an irreducible qi-cyclic Galois cover Zi --+ P~[~] 

whose central fibre is a connected mock cover ramified only at (fi), and whose 

pullback to the completion, 2~ -+ Pl[[x] ] is an irreducible cover (Definition 2.7). 

The cover Z~ -+ PI[[~] l has the same central fibre as Z~ --+ P~[x], so the central 

fibre of Zi --+ P~ is a connected mock cover unramified over t = 0 since the 

{fi} were chosen to be non-vanishing at t = 0. The branch loci of these covers 

Zi --~ pl[[~]] were chosen to be disjoint on the central fibre. We apply Proposition 

3.12 to obtain a regular irreducible G-Galois cover of P~[[~]] which is mock on the 

central fibre and unramified on the central fibre at t = 0. Thus any point of pl[[~]] 

whose reduction mod (x) is in V ( t )  is unramified. It follows from Proposition 3.2 

that  the cover is regular. | 
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To extend Theorem 3.13 to an arbi t rary complete domain,  we will need the 

following lemma and results from [Ha3]. 

LEMMA 3.14: If  R is an integral domain which is complete with respect to a 

non-zero prime ideal a then [~ contains either a complete discrete valuation ring 

or a copy of  Z[[x]]. This subring may be chosen so that, in the first case, the 

contraction of a is the maximal ideal and in the second case the contraction of a 

is the ideal generated by x. 

Proof: We adapt  an idea from the proof of [Ja, Lemma 1.5] to find the desired 

subring. First  suppose that  char(/~) -- 0. Then  Z C / ~  and there are two cases: 

CASE 1: Z n a ; ~  (0). Then  Z n a -- pZ for some prime number  p. S i n c e / ~ i s  

complete with respect to a and pZ c a, we have Zp C_/~ and a N Zp -- (p). Thus  

we take the desired subring to be Zp. 

CASE 2: Z n a = (0). Since a is a non-zero ideal, there exists some non-zero 

x E a. I f x  were algebraic over Q, then anx ~ ' ÷ . . . ÷ a l x + a o  -- 0 for some 

ao ,a l , . . .  , an  E Z with a0 ~ 0. Hence we would have a0 E Z N a  ---- (0). From this 

contradict ion we conclude tha t  x is t ranscendental  over Q and the polynomial  

ring Z[x] is contained in/~. Since/~ is complete with respect to a and since x C a, 

we have Z[[x]] c_/~. So (x) _c Z[[x]] n a. Let z e a N Z[[x]]. Then  z is a power 

series in Z[[x]] wi thout  constant  term (or else, by substract ing off a multiple of 

x, we would have a non-zero element in Z n a). Hence z E (x), so we have shown 

a N Z[[x]] --- (x). Thus  we may take the desired subring to be Z[[x]]. 

Now suppose char(/~) = p ~ 0. Then  Fp n a ---- 0. As in Case 2, with ]Fp instead 

of Z and Q, we show tha t  we may take the desired subring to be Fp [[x]]. II 

Using the above lemma, Theorem 3.13 and [H3, Theorem 2.3], we may now 

generalize [H3, Theorem 2.3] to any domain which contains a domain tha t  is 

complete with respect to a non-zero prime ideal. In particular, we may eliminate 

the hypothesis  from [H3, Theorem 2.3] requiring the domain be normal  and 

complete with respect to a maximal  ideal and may instead consider domains  

complete with respect to any non-zero prime ideal. 

R e m a r k  3.15: I t  follows from the proof  of [H3, Theorem 2.3] tha t  one may  choose 

the covers in the theorem to be regular and to be unramified at t = 0 on the 

central fibre. 

Remark  3.16: Harbater  does not explicitly state tha t  the domain /~ must  be 

normal  in his hypothesis.  However, this is implicit in the proof, as it relies on 
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[H3, Proposition Lemma 2.1], which does include normality as a hypothesis on 

THEOREM 3.17: Let R be a domain containing a domain that is complete at a 

non-zero prime ideal and let G be a finite group. Then there exists a regular 

irreducible G-Galois cover X -4 P~. Moreover, this cover can be chosen so that 

the central fibre is a mock cover. 

Proof'. By Lemma 3.14, /~ contains a subring /~0 which is either a complete 

discrete valuation ring or a copy of El[x]]. By [H3, Theorem 2.3] and Theorem 

3.13 respectively, there is a regular irreducible G-Galois cover X0 --4 Pk Let 
Ro" 

X be the pullback of X over P~. Then the central fibre of X --4 P~ is a mock 

cover. The regularity implies that X -4 P~ is a regular irreducible G-Galois 

cover. II 

By taking the generic fibre of the above cover we have the following corollary: 

COROLLARY 3.18: Let R be a domain which is not a field, such that [~ contains 

a subdomain that is complete with respect to a non-zero prime ideal. Then every 

finite group G is regular over the fraction field of/~[x] with a rational point. 

Moreover, the cover corresponding to the extension may be chosen to be the 

generic fibre of a cover that is mock on the central fibre. 

We will need the following lemma in the proof of the next corollary. 

LEMMA 3.19: The fraction field of a Noetherian domain of dimension at least 

two is separably Hilbertian. 

Proof'. Let R be a Noetherian domain of dimension at least two. Let R ~ be the 

integral closure of R. It follows from [ZS, Corollary to Thm. V.2.3] that R and 

R ~ have the same Krull dimension. It follows from [N, Theorem 33.10], that R ~ is 

a Krull domain. Hence by a theorem of Weissauer [FrJ, Thm. 14:17], the fraction 

field of R is separably Hilbertian. II 

COROLLARY 3.20: Let G be a finite group; let R be a Noetherian domain of 

dimension at least two that contains a subdomain that is complete with respect 

to a non-zero prime ideal Then G is realizable over F = Frac(R). 

Proof: By Corollary 3.18 there exists an irreducible G-Galois cover X --4 l?lF. 

By Lemma 3.19, F is separably Hilbertian. Therefore a suitable specialization of 

X -4 P~ gives a Galois extension L / F  with group G. | 
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As an immediate consequence we have an answer in the Noetherian case, to a 

question posed by Jarden [Ja, Problem 3.8]. 

COROLLARY 3.21: Let  G be a f ini te group, let R be a Noether ian domain and 

let x = X l , . . . , x ~  wi th  r >>_ 1. I f  d im(R)  >_ 1 or r > 2 then G is realizable over 

the  fraction field F o f  n[[x]]. 

Proof: It  follows from [B, III,  2.10, Cor. 6 to Thm. 2] that  R[[x]] is a Noetherian 

domain. Since R[[x]] is complete at ( X l ' "  xr) and the dimension of this domain 

is dim(R) + r > 2, the result follows immediately from Corollary 3.20. | 
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